Probing Primordial Non-Gaussianity with Large-Scale Structure

Roman Scoccimarro (NYU)

- K.C. Chan, M. Manera, L. Hui and R.S. (in preparation)
- + A. Berlind and C. McBride

Primordial Non-Gaussianity from Inflation

Gaussianity is a consequence of:
i) inflaton a single scalar field
ii) slowly rolling
iii) in vacuum state
iv) with canonical kinetic terms
if we relax i) we have for the Bardeen potential,

$$
\Phi=\phi+f_{\mathrm{NL}} \phi^{2}
$$

which implies for it a bispectrum,

$$
B=2 f_{\mathrm{NL}} P_{1} P_{2}+\text { cyc. } \quad-10<f_{\mathrm{NL}}^{\text {local }}<74
$$

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias at large scales (Dalal et al 2008),

$$
b_{1}(k)=b_{10}+\Delta b_{1}\left(k, f_{\mathrm{NL}}\right)
$$

with $b \sim 1 / k^{\wedge} 2$ at low-k.Thus the power spectrum of galaxies is sensitive to fnl!!

Generic Predictions in Peak-Background Split

We are interested in establishing as rigorously as possible the validity of the local PNG bias formula

$$
\Delta b_{1}\left(k, f_{\mathrm{NL}}\right)=\frac{2 f_{\mathrm{NL}}}{M(k)}\left(b_{10}-1\right) \delta_{c}
$$

and generalizing it to arbitrary (non-local) PNG. Some issues in derivations,

- proper treatment of filter and transfer function effects
- dependence on primordial bispectrum (cannot be just a number)
- peaks in phi vs peaks in delta approximations

$$
\nabla \phi^{2}=2 \phi \nabla^{2} \phi+2 \nabla \phi \cdot \nabla \phi \approx 2 \phi \nabla^{2} \phi ?
$$

simulations suggest a somewhat smaller amplitude (depending on halo def)
we know that "PBS" (in std implementation) is not that accurate even in Gaussian case:

link 0.2

link 0.2

Manera, Sheth, R.S. (2010)

Figure 11. Comparison of large-scale bias estimates for the same halo mass bins as in previous figures when $l_{\text {link }}=0.2$. Thick bars show the measured $P_{\mathrm{hm}} / P_{\mathrm{mm}}$ (left-hand panel) and $\sqrt{\xi_{\mathrm{hh}} / \xi_{\mathrm{mm}}}$ (right-hand panel), and symbols with error bars show the linear bias parameter b_{1} predicted from the peakbackground split.

Insight into mass function and bias is provided by the excursion-set formalism of halo formation (Bond et al I991).

A full calculation of the PBS change in bias due to arbitrary PNG bispectrum gives,

$$
\begin{gathered}
\Delta b(k)=\frac{\partial_{\sigma^{2}}\left[I_{B}(k) \mathcal{F}_{0}\right]}{M(k) \mathcal{F}_{0}} \\
I_{B}(k, R) \equiv \frac{1}{P_{\phi}(k)} \int B_{\delta_{R} \delta_{R} \phi}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q},-\boldsymbol{k}) d^{3} q
\end{gathered}
$$

Note that, unlike the GW86 formula, what matters is the *cross* bispectrum. For local PNG, expanding in powers of k small (with higher-order corrections coming from filter, transfer function, grad-phi terms, etc

$$
I_{B}(k=0, R) \approx 4 f_{\mathrm{NL}} \sigma_{R}^{2}(m)+\mathcal{O}\left(k^{2}\right)
$$

which gives
non-markovian

$$
\Delta b(k)=\frac{4 f_{\mathrm{NL}}}{M(k)} \partial_{\ln \sigma^{2}} \ln \left(\sigma^{2} \mathcal{F}_{0}\right) \stackrel{\downarrow}{<} \frac{2 f_{\mathrm{NL}}}{M(k)} \delta_{c} \frac{\left(\partial \mathcal{F} / \partial \delta_{\ell}\right)_{0}}{\mathcal{F}_{0}}=\frac{2 f_{\mathrm{NL}}}{M(k)} \delta_{c}\left(b_{1}-1\right)
$$

the precise relationship has to be obtained from the first-crossing prob FO.

Large Suite of Dark Matter Simulations (LasDamas)

Oriana
with
A. Berlind, C. McBride, M. Manera, J. Gardner, M. Busha, R. Wechsler, F. van den Bosch

LasDamas Simulations

Name	Sample	Lbox	Npar	mpar	Nrealiz
Oriana (G)	$\begin{gathered} \text { LRG } \\ + \text { Main - } 22 \end{gathered}$	2400	1280^3	4.57E+1I	42
Oriana fnl_local=+100	$\begin{gathered} \text { LRG } \\ + \text { Main - } 22 \end{gathered}$	2400	I280^3	4.57E+II	12
$\begin{gathered} \text { Oriana } \\ \text { fnl_equi }=-400 \end{gathered}$	$\begin{gathered} \text { LRG } \\ + \text { Main - } 22 \end{gathered}$	2400	I280^3	4.57E+II	12
Oriana fnl_orto=-400	$\begin{gathered} \text { LRG } \\ + \text { Main - } 22 \end{gathered}$	2400	I280^3	4.57E+II	12
Carmen	Main -2I	1000	1120^3	$4.98 \mathrm{E}+10$	42
Esmeralda	Main -20	640	1250^3	$9.31 \mathrm{E}+09$	50
Consuelo	Main -19-18	420	1400^3	1.87E+09	50

Nmocks=4 x Nrealiz, 2LPT ICs, Gaussian Mocks available at http:///ss.phy.vanderbilt.edu/lasdamas/

Large-Scale Bias in non-local PNG: Simulations

- In single-field inflationary models, we are instead interested in models that correspond to non-local PNG (due to non-canonical kinetic terms). For example, the equilateral model has a Bardeen potential bispectrum,

$$
\begin{aligned}
\left(6 f_{\mathrm{NL}}\right)^{-1} B_{\text {equil }}=-P_{1} P_{2}-2\left(P_{1} P_{2} P_{3}\right)^{2 / 3}+ & P_{1}^{1 / 3} P_{2}^{2 / 3} P_{3} \\
& -214<f_{\mathrm{NL}}^{\text {equil }}<266
\end{aligned}
$$

(permutations are understood), whereas the orthogonal model template reads

$$
\begin{array}{r}
\left(6 f_{\mathrm{NL}}\right)^{-1} B_{\text {ortho }}=-3 P_{1} P_{2}-8\left(P_{1} P_{2} P_{3}\right)^{2 / 3}+3 P_{1}^{1 / 3} P_{2}^{2 / 3} P_{3} \\
-410<f_{\mathrm{NL}}^{\text {ortho }}<6
\end{array}
$$

We are interested in generating such bispectra from quadratic (non-local) models, i.e.

$$
\Phi=\phi+f_{\mathrm{NL}} K[\phi, \phi]
$$

where K is the appropriate non-local quadratic kernel that generates the desired bispectrum. For simplicity, here we assume scale-invariance.

- Introduce some handy non-local operators

$$
\begin{gathered}
\partial \phi \equiv \sqrt{-\nabla^{2}} \phi(\mathbf{x}) \equiv \int \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} k \phi(\mathbf{k}) d^{3} k \\
\nabla^{-2} A(\mathbf{x}) \equiv-\int \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}}\left(\frac{1}{k^{2}}\right) A(\mathbf{k}) d^{3} k \\
\partial^{-1} A \equiv \sqrt{-\nabla^{-2}} A \equiv \int \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}}\left(\frac{1}{k}\right) A(\mathbf{k}) d^{3} k
\end{gathered}
$$

Then the EQ and ORT bispectra templates can be generated by,
$K[\phi, \phi]=a \phi^{2}+b \partial^{-1}(\phi \partial \phi)+c \nabla^{-2}\left(\phi \nabla^{2} \phi\right)+d \nabla^{-2}(\partial \phi)^{2}+e \nabla^{-2} \partial^{-1}\left(\phi \nabla^{2} \partial \phi\right)+f \nabla^{-2} \partial^{-1}\left(\nabla^{2} \phi \partial \phi\right)$
regularity constraints (one-loop corrections to the power spectrum must preserve scale-invariance in the IR) restrict the free parameters that leave the bispectrum invariant. Note these kernels have correct exchange symmetry.

CrossBias from Oriana Simulations $z=0,0.34,0.97$

$P_{\mathrm{h}}^{\mathrm{ZA}} / P_{\mathrm{h}}$

Halo S / N for Non-Gaussian Models, $\mathrm{z}=1.0, \mathrm{M}>10^{14} \mathrm{Mo}$
dashed $=$ from bispectrum, solid=from power

Adding Bispectrum information helps a lot... Signal to Noise $\mathrm{f}_{\mathrm{NL}}=100$ (local)
LRG mocks including redshift distortions, Mag <21.2, $\mathrm{z}=0.342$

Things to worry about when using Bisp for PNG...

Shapes induced by:

- gravitational instability (2-loop RPT for the mass)
- Redshift distortions beyond PT (extension of RS 04)
- Galaxy bias beyond local approximation (even for Gaussian ICs)
- characterize Bispectrum Eigenmodes + non-Gaussian likelihood (RS 00; Gaztanaga \& RS 05)

Bispectrum

