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Gaussianity is a consequence of:

i) inflaton a single scalar field
ii) slowly rolling
iii) in vacuum state
iv) with canonical kinetic terms

which implies for it a bispectrum,

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias 
at large scales (Dalal et al 2008),

with b~1/k^2 at low-k. Thus the power spectrum of galaxies is sensitive to fnl!!

B = 2fNLP1P2 + cyc.

Φ = φ + fNLφ2

if we relax i) we have for the Bardeen potential,

b1(k) = b10 + ∆b1(k, fNL)

−10 < f local
NL < 74

Primordial Non-Gaussianity from Inflation
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Generic Predictions in Peak-Background Split

We are interested in establishing as rigorously as possible the validity of the 
local PNG bias formula

∆b1(k, fNL) =
2fNL

M(k)
(b10 − 1)δc

and generalizing it to arbitrary (non-local) PNG. Some issues in derivations,

- proper treatment of filter and transfer function effects

- dependence on primordial bispectrum (cannot be just a number)

- peaks in phi vs peaks in delta approximations

∇φ2 = 2φ∇2φ + 2∇φ · ∇φ ≈ 2φ∇2φ?

simulations suggest a somewhat smaller amplitude (depending on halo def)
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Large-scale bias 599

Figure 10. Configuration space estimate of halo bias,
√

ξhh/ξdm, for the same mass bins as in previous figures, when llink = 0.2 at z = 0.5 (left-hand panel)
and z = 0 (right-hand panel). Error bars show the error on the mean value between simulations.

Figure 11. Comparison of large-scale bias estimates for the same halo mass
bins as in previous figures when llink = 0.2. Thick bars show the measured
P hm/P mm (left-hand panel) and

√
ξhh/ξmm (right-hand panel), and symbols

with error bars show the linear bias parameter b1 predicted from the peak-
background split.

corrections depends on a parameter, σ 2, for which there is no un-
derlying theory, other than the expectation that it is smaller than
unity, but greater than zero. While non-linear terms could explain
the difference between bξ and b×, the differences between these
bias factors and b1 are consistent with our measurements only if
we ignore terms of the order of σ 4

R and higher, and we set b3 = 0,
although there is no theoretical justification for either of these steps.
But then, to be self-consistent, we should use the same algorithm
for the lower mass bins, and there what (barely) worked for the high
masses no longer works (because b2 and b3 are negative).

Although our analysis was restricted to massive haloes, it is likely
that our conclusions about the (in)accuracy of the peak-background
split extend to lower masses. To illustrate, Fig. 13 shows how the
predicted b× differs from the linear bias factor b1, for a number
of choices of the unknown parameter σ R. (To make the plot, we
have ignored terms of the order of σ 4

R and higher in equation 10.)
Note that the difference between b× and b1 is not simple: at high
masses where b1 ≥ 2, b× > b1, whereas the opposite is true at
intermediate masses, and b× ≈ b1 at very low masses. In recent
simulations which resolve smaller haloes (e.g. Boylan-Kolchin et al.
2009), the measured large-scale bias is indeed smaller than b1, in
qualitative agreement with Fig. 13. However, comparison with fig.
10 of Boylan-Kolchin et al. (2009) shows that, at the 10 per cent
level, the quantitative agreement is not good.

Figure 12. Same as previous figure, but now for haloes identified using
an SO algorithm. Results are shown for the same mass bins as before,
except that the lowest mass bin is from 5.93 × 1013 M% to 7.0 × 1013 M%.
Thick bars show the measured P hm/P mm (left) and

√
ξhh/ξmm (right); the

thickness of the bars indicates the 2σ range. Symbols with error bars show
the linear bias parameter b1 predicted from fitting equation (19) to the halo
abundances using the Poisson and χ2 methods. Error bars show the rms
scatter between realizations.

We conclude that more work is needed to understand the nature
of halo bias at the few per cent level. Our results suggest that
we are beginning to see the limitations of the local deterministic
bias model – while the inclusion of higher order bias terms can
sometimes explain the qualitative difference between b1, b× and bξ ,
it does not work quantitatively for all masses. As one alternative,
we considered a peaks bias model which is linear but non-local
and scale dependent in k-space. More work is needed before a
fair quantitative comparison of this model with the measurements
can be made, but our measurements suggest qualitative agreement.
Another, which we are pursuing, is to study models in which the
evolution between initial and evolved fields (e.g. equation 2) is no
longer a deterministic function of the overdensity.

Finally, we note that our expression for the bias factor implicitly
assumes that the mass function has a universal form. The fact that
it is not quite universal will modify the bias factor predicted by the
peak-background split (Sheth & Tormen 1999), although work in
progress suggests this is not enough to explain the discrepancies we
have found.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 589–602

we know that “PBS” (in std implementation) is not that accurate even in 
Gaussian case:

Manera, Sheth,
R.S. (2010)

PBS from
measured 

mass 
function

measured
bias from 

cross-
spectrum
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Insight into mass function and bias is provided by the excursion-set formalism 
of halo formation (Bond et al 1991). 

δs(x)

δ�

σ2
� σ2

m

δc

first up-crossing
defines halo

δs

σ2
s

σ2
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∆b(k) =
∂σ2

�
IB(k)F0

�

M(k)F0

IB(k, R) ≡ 1
Pφ(k)

�
BδRδRφ(q,k− q,−k) d3q

A full calculation of the PBS change in bias due to arbitrary PNG bispectrum 
gives,

Note that, unlike the GW86 formula, what matters is the *cross* bispectrum. 
For local PNG, expanding in powers of k small (with higher-order corrections 
coming from filter, transfer function, grad-phi terms, etc

IB(k = 0, R) ≈ 4fNL σR
2(m) +O(k2)

∆b(k) =
4fNL

M(k)
∂ln σ2 ln(σ2F0) <

2fNL

M(k)
δc

(∂F/∂δ�)0
F0

=
2fNL

M(k)
δc(b1 − 1)

which gives
non-markovian

the precise relationship has to be obtained from the first-crossing prob F0.
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10M CPU Hours 

with 
A. Berlind,

C. McBride,
M. Manera,
J. Gardner,
M. Busha,

R. Wechsler,
F. van den Bosch
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Name Sample Lbox Npar mpar Nrealiz

Oriana (G) LRG
+Main -22

2400 1280^3 4.57E+11 42

Oriana 
fnl_local=+100

LRG
+Main -22

2400 1280^3 4.57E+11 12

Oriana 
fnl_equi=-400

LRG
+Main -22

2400 1280^3 4.57E+11 12

Oriana 
fnl_orto=-400

LRG
+Main -22

2400 1280^3 4.57E+11 12

Carmen Main -21 1000 1120^3 4.98E+10 42

Esmeralda Main -20 640 1250^3 9.31E+09 50

Consuelo Main -19-18 420 1400^3 1.87E+09 50

LasDamas Simulations

Nmocks=4 x Nrealiz,    2LPT ICs,   Gaussian Mocks available at http://lss.phy.vanderbilt.edu/lasdamas/
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Large-Scale Bias in non-local PNG: Simulations

- In single-field inflationary models, we are instead interested in models that 
correspond to non-local PNG (due to non-canonical kinetic terms). For 
example, the equilateral model has a Bardeen potential bispectrum,

(permutations are understood), whereas the orthogonal model template reads

(6fNL)−1Bequil = −P1P2 − 2(P1P2P3)2/3 + P 1/3
1 P 2/3

2 P3

(6fNL)−1Bortho = −3P1P2 − 8(P1P2P3)2/3 + 3P 1/3
1 P 2/3

2 P3

We are interested in generating such bispectra from quadratic (non-local)
models, i.e.

Φ = φ + fNL K[φ, φ]

where K is the appropriate non-local quadratic kernel that generates the 
desired bispectrum. For simplicity, here we assume scale-invariance.

−214 < f equil
NL < 266

−410 < fortho
NL < 6
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K[φ, φ] = aφ2 + b ∂−1(φ ∂φ) + c∇−2(φ ∇2φ) + d∇−2(∂φ)2 + e∇−2∂−1(φ∇2∂φ) + f ∇−2∂−1(∇2φ ∂φ)

- Introduce some handy non-local operators

∂φ ≡
�
−∇2φ(x) ≡

�
e−ik·x k φ(k) d3k

∇−2A(x) ≡ −
�

e−ik·x
� 1

k2

�
A(k) d3k

∂−1A ≡
�
−∇−2A ≡

�
e−ik·x

�1
k

�
A(k) d3k

regularity constraints (one-loop corrections to the power spectrum must 
preserve scale-invariance in the IR) restrict the free parameters that leave the 
bispectrum invariant.  Note these kernels have correct exchange symmetry.

Then the EQ and ORT bispectra templates can be generated by,

Saturday, May 14, 2011



Ortho

Local

Equil

Saturday, May 14, 2011



1�1013 2�1013 5�1013 1�1014 2�1014 5�1014 1�1015
0.75

0.80

0.85

0.90

0.95

1.00

nZA49/n2LPT49

f loc
NL = 100

z = 1

M⊙/h

2LPT zi=49 equivalent to:

- ZA zi=2040 (if measuring MF at z=1)
- ZA zi=4228 (if measuring MF at z=0)
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LasDamas vs. Warren et al. (2006) 
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f loc
NL = 100

bscale−indep = Phm/P −∆btheory
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f loc
NL = 100

bscale−indep = Phm/P −∆btheory
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forthog
NL = −400

bscale−indep = Phm/P −∆btheory
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Halo S/N for Non-Gaussian Models, z=1.0,  M>1014Mo
dashed= from bispectrum, solid=from power

V = 2.43 (Gpc/h)3
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from P(k)
from Bispectrum

Signal to Noise   fNL=100
LRG mocks including redshift distortions, Mag < 21.2 , z = 0.342 

Adding Bispectrum information helps a lot...

V = 2.43 (Gpc/h)3
n̄ = 9.5× 10−5 (Mpc/h)−3

(S/N)→ (S/N) /3.4

(local)
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Shapes induced by:

- gravitational instability (2-loop RPT for the mass)
- Redshift distortions beyond PT (extension of RS 04)
- Galaxy bias beyond local approximation (even for Gaussian ICs) 

- characterize Bispectrum Eigenmodes + non-Gaussian likelihood (RS 00; 
Gaztanaga &  RS 05)

Things to worry about when using Bisp for PNG...
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